Translate

Rabu, 24 Oktober 2012

FLAME FOTOMETER


FLAME FOTOMETER

Flame fotometer adalah suatu metoda analisa yang berdasarkan pada pengukuran besaran emisi sinar monokromatis spsifik pada panjang gelombang tertentu yang di pancarkan oleh suatu logam alkali atau alkali tanah pada saat berpijar dalam keadaan nyala.
Besaran Intensitas sinar pancaran ini, ternyata sebanding dengan tingkat kandungan unsur dalam larutan, sehingga metoda flame fotometer digunakan untuk tujuan kuantitatif dengan mengukur Intensitasnya secara relatif. Metoda ini menggunakan foto sel sebagai detektornya dan pada kondisi yang sama digunakan gas propana atau elpiji sebagai pembakarnya untuk membebaskan air sehingga yang tersisa hanyalah kandungan logam.
Atomizer adalah bagian dari alat pada flame fotometer untuk merubah sampel dari suatu larutan menjadi suatu aerosol atau kabut yang kemudian masuk kedalam nyala. Proses ini merupakan proses yang paling penting dalam menentukan hasil dari analisa nyala. Untuk mendapatkan nyala yang tetap maka pembakar harus disuplay dengan bahan bakar dan oksigen/udara dengan tekanan yang tetap
Prinsip dari flame fotometer ini adalah pancaran cahaya elektron yang diemisi dari keadaan tereksitasi dan kemudian kembali ke keadaan dasar. Keadaan tereksitasi ini terjadi apabila elektron dari atom netral keluar dari orbitalnya menuju orbital yang lebih tinggi. Proses eksitasi berlangsung dengan waktu yang relatif sangat singkat sekali. Sesaat setelah tereksitasi, elektron tersebut akan kembali ke keadaan dasarnya dan proses ini dinamakan emisi. Dalam keadaan teremisi inilah elektron tesebut akan memancarkan sejumlah sinar monokromatis tertentu. Dalam keadaan berpijar, logam-logam tertentu akan menghasilkan pijaran warna tertentu pula. Kita mengenal bahwa Natrium akan menghasilkan pijaran warna kuning, Kalium memancarkan sinar ungu sedangkan Litium akan memancarkan sinar merah.
Flame fotometer memiliki beberapa instrumen yang digunakan untuk tujuan analisa kuantitatif, diantaranya adalah :
Ø  Filter flame fotometer
Filter flame fotometer menggunakan filter pada monokromatornya dan analisa terbatas hanya untuk unsur Na, K dan Li
Ø  Spektro flame fotometer
Pada spektro flame fotometer yang berfungsi sebagai monokromatornya adalah pengatur panjang gelombang baik prisma atau kisi difraksi dan digunakan untuk analisa unsur K, Ca, Mg, Sr, Ba, dll.

Beberapa metoda yang dilakukan untuk analisa secara flame fotometri :

1. Cara intensitas langsung (Direct Intensity Method)
2. Cara standar dalam (Internal standar method)
3. Cara adisi standar atau cara penambahan standar

Gangguan-gangguan dalam fotometri menurut sumber dan filtratnya:

Ø  Gangguan Spectral
Yaitu gangguan yang di sebabkan oleh unsur-unsur lain yang terdapat bersama dengan unsur yang akan dianalisa. Gangguan ini disebabkan karena penggunaan filter untuk memilih l yang akan diukur intensitasnya.
Misalnya : spektrum pita dari Ca(OH)2 akan mengganggu pancaran sinar Na pada panjang gelombang 550 nm. Gangguan tersebut dapat dihilangkan dengan mempertinggi pemisahan cahaya atau mengatur band width.

Ø  Gangguan dari sifat fisik larutan
Variasi sifat fisik dari larutan dapat memperkecil atau membesar intensitas sinar yang akan dianalisa, sehingga intensitas yang terbaca tidak sesuai dengan konsentrasi yang akan dianalisa, seperti :
1. Visikositas
Makin besar visikositas dari suatu larutan yang dianalisa, makin lambat larutan tersebut mencapai nyala. Sehingga intensitas pancaran pada alat akan semakin kecil dan tidak sesuai dengan konsentrasi unsur yang kita analisa.
2. Tekanan uap dan permukaan larutan.
Sifat ini akan mempengaruhi ukuran besar kabut. Kabut dengan ukuran besar akan sedikit mecapai nyala, sehingga intensitas yang terbaca pada alat akan lebih kecil dari nilai yang sebenarnya.
Ø  Gangguan ionisasi
Gangguan ini disebabkan karena menggunakan suhu nyala yang lebih tinggi. Logam alkali dan alkali tanah yang mudah terionisasi, akibat dari adanya ionisasi akan mengurangi jumlah atom netral. Akibatnya intensitas dari spektrum atom akan berkurang dan tidak sesuai dengan konsentrasi yang akan kita amati.
Nyala yang dihasilkan dari campuran oksigen dan gas akan mempunyai energi yang dapat mengionisasi logam alkali dan alkali tanah hal ini menggakibatkan terjadinya penurunan jumlah atom yang akan diekstraksi. Adanya atom yang lebih mudah terionisasi akan memberikan sejumlah elektron kedalam nyala sehingga akan mendesak ion menjadi atom.
Ø  Gangguan dari anion-anion yang ada dalam larutan logam.
Pada umumnya sinar dari emisi unsur-unsur akan lebih rendah apabila jumlah asam yang relatif tinggi gangguan anion ini tidak akan nyata bila kadarnya lebih rendah dari 0,1M diatas kepekatan tersebut asam sulfat, nitrat dan fosfat akan memberikan akibat pada penurunan sinar emisi logam.

Selasa, 23 Oktober 2012

KEMASAMAN TANAH (pH)

Konsep Kemasaman Tanah
Konsep Kemasaman Tanah adalah salah satu prinsip dasar kimia tanah yang mengindikasikan reaksi tanah. Tanah bereaksi netral jika ber pH 7,0. Jika pH tanah > 7,0 merupakan tanah bereaksi basa atau disebut tanah alkali. jika pH tanah lebih rendah dari 7,0 disebut tanah masam.
Kedua kondisi ekstrem, yaitu: terlalu asam dan terlalu basa merupakan kondisi yang sangat merugikan bagi pertumbuhan dan perkembangan tanaman. Akan tetapi, ada beberapa reaksi kimia di alam yang terjadi dalam kondisi pH netral.

Kriteria Kemasaman Tanah (pH)

Pengelompokan kemasaman tanah berbeda dengan pengelompokkan terhadap sifat kimia tanah lain, karena untuk kemasaman tanah (pH) dikelompokkan dalam enam kategori berikut:1. Sangat Masam untuk pH tanah lebih rendah dari 4,5
2. Masam untuk pH tanah berkisar antara 4,5 s/d 5,5
3. Agak Masam untuk pH tanah berkisar antara 5,6 s/d 6,5
4. Netral untuk pH tanah berkisar antara 6,6 s/d 7,5
5. Agak Alkalis untuk pH tanah berkisar antara 7,6 s/d 8,5
6. Alkalis untuk pH tanah lebih besar dari 8,5.


Ad 2. Faktor Penyebab Terjadinya Kemasaman Tanah
Air Hujan
Ada kekhawatiran tentang hujan asam, tetapi hampir semua hujan adalah ber pH rendah (asam). Air Hujan murni yang tidak mengandung bahan pencemar pada dasarnya adalah air distilasi. Air hujan ini yang dalam kesetimbangan dengan atmosfer akan memiliki pH sekitar 5,6 karena pelarutan karbon dioksida di dalam air.
Ketika air hujan murni berada dalam kesetimbangan dengan karbon dioksida, maka konsentrasi ion hidrogen yang dihasilkan menyebabkan pH 5,6.


Respirasi Akar
Tanaman juga menghasilkan karbon dioksida karena proses respirasi akar, dan selama periode pertumbuhan aktif akar dapat menyebabkan karbon dioksida di tanah yang konsentrasinya lebih tinggi beberapa kali dari di atmosfer, sehingga terjadi peningkatan jumlah karbon dioksida terlarut dalam air tanah dan menyebabkan peningkatan keasaman tanah atau pH menjadi lebih rendah.

Pupuk
Karbon dioksida bukan satu-satunya sumber ion hidrogen dalam tanah, namun. Pada tanah yang dikelola, pupuk dapat menjadi sumber utama ion hidrogen.


Faktor Pupuk (Pupuk Amonium dan Pupuk Mono Kalsium Fosfat).
Pupuk Amonium
pupuk modern biasanya menggunakan amonium sebagai sumber nitrogen, akan tetapi oksidasi ammonium dihasilkan ion nitrat dan ion hidrogen sehingga menyebabkan pengasaman tanah.
Dengan kata lain, dua atom hidrogen dihasilkan setiap molekul ammonium teroksidasi.

Pupuk Mono Kalsium Fosfat
Monocalcium fosfat yang sering digunakan sebagai salah satu komponen pupuk juga menjadi faktor penyebab terjadinya proses pengasaman tanah (meskipun lebih rendah daripada amonium). Senyawa ini akan terhidrolisis dalam air membentuk fosfat bikalsium dan Asam fosfat

Asam fosfat terdisosiasi sangat cepat seiring dengan peningkatan pH dari 3,0 menjadi lebih dari 7.0.
Secara umum ion hidrogen (H+) ketiga tersebut akan terlarut pada pH di atas netral, sehingga tidak termasuk faktor penyebab pengasaman tanah. Akan tetapi, kedua ion hidrogen ( H+) yang sudah terlarut dalam kisaran pH tanah asam, termasuk faktor penyebab kemasaman tanah.
Ketika pupuk fosfor diberikan dalam lubang tugal, maka H3PO4 terdisosiasi dalam tanah sehingga terjadi nilai pH yang sangat rendah didekat pupuk tersebut. Tingkat keasaman ini akan secara bertahap menyebar ke dalam tanah sekitar lokasi pupuk. Menurut
Lindsay dan Stephenson (1959), nilai pH 1,5 dapat ditemukan segera di zona sekitar pupuk tersebut.

Faktor Reaksi Oksidasi yang Menghasilkan Ion Hidrogen
Semua reaksi oksidasi dalam tanah yang menghasilkan ion hidrogen dapat menyebabkan terjadinya pengasaman tanah.
Salah satu reaksi pengasaman paling efektif adalah oksidasi sulfur anorganik. Belerang biasanya digunakan jika tanah memiliki pH lebih tinggi dari yang diinginkan, sehingga diperlukan upaya penurunan pH tanah.
Misalnya, Reaksi oksidasi pirit yang terjadi pada tanah rawa yang diangkat sehingga terjadi reaksi oksidasi dari pirit tanah tersebut.
Setiap ion S dihasilkan 2 ion Hidrogen


Bahan Organik
Berbagai macam Bahan Organik juga dapat menyebabkan pengasamkan tanah. Kemampuan pengasamannya tergantung pada jenis tanaman sebagai sumber bahan organik tersebut.

Beberapa tanaman mengandung asam organik dalam jumlah yang sangat berbeda dengan tanaman lainnya.
Asam organik hasil dekomposisi bahan organik menyebabkan pengasaman tanah.
Bahan organik yang berasal dari tanaman dengan kandungan basa-basa rendah juga menyebabkan terjadinya sedikit pengasaman tanah. Bahan organik yang berasal dari tanaman dengan kandungan basa-basa kurang mencukupi kebutuhan mikrobia pendekomposernya, menyebabkan mikrobia tersebut menyerap basa-basa keperluannya dari sistem tanah, sehingga basa-basa tanah seperti kalsium dan magnesium terkuras dari tanah maka menyebabkan terjadinya pengasaman tanah.

Tanaman
Pertumbuhan tanaman juga berkontribusi dalam pengasaman tanah, proses penyerapan hara utama (kalium, kalsium dan magnesium) disertai pertukaran dengan ion hidrogen sehingga menyebabkan terjadinya pengasaman tanah.
Jenis Tanaman tertentu juga mempengaruhi pengasaman tanah. Contohnya adalah tanaman Legumninosa. Selama masa pertumbuhan tanaman Leguminosa terjadi penyerapan anion dan kation dengan perbandingan yang tidak seimbang, sehingga lebih mengasamkan tanah. Tanaman leguminosa menyerap hara nitrogen dari hasil fiksasi mikrobia yang bersimbiosis dengannya. Tanaman non-leguminosa menyerap nitrogen dari sistem tanah dan penyerapan ini dalam kondisi yang seimbang dengan penyerapan kation-kation basa, sehingga lebih sedikit pertukaran dengan ion hidrogen, maka sedikit menyebabkan pengasaman tanah.
Hujan Asam
Hujan asam juga memberikan kontribusi dalam proses pengasaman tanah. Dalam sistem tanah kontribusi dari hujan asam relatif rendah dibandingkan dengan pengaruh dari pasir sesquioxida yang bersifat sangat asam yang kapasitas tukar kation sangat rendah. Akan tetapi banyak tanaman sangat peka terhadap pengaruh dari hujan asam.




Ad 3. Pengukuran pH Tanah

Reaksi tanah atau pH tanah merupakan ukuran kemasaman tanah atau kebasaan tanah.
Tanah ber pH 7 adalah tanah bereaksi netral, tanah ber pH > 7 adalah tanah bereaksi basa dan tanah ber pH lebih rendah dari 7 merupakan tanah bereaksi asam atau yang dikenal sebagai tanah masam (acid soils).
Reaksi tanah atau pH tanah dapat diukur baik dengan menggunakan pelarut air (pHw) atau bisa juga dengan menggunakan pelarut kalsium klorida (pHCa), sehingga pH hasil pengukuran akan bervariasi tergantung dari metode pelarut yang digunakan.

Minggu, 21 Oktober 2012

Prinsip AAS (Atomic Absorbance Spectrophotometer)

Spektrofotometer serapan atom (AAS) merupakan teknik analisis kuantitafif dari unsur-unsur yang pemakainnya sangat luas di berbagai bidang karena prosedurnya selektif, spesifik, biaya analisisnya relatif murah, sensitivitasnya tinggi (ppm-ppb), dapat dengan mudah membuat matriks yang sesuai dengan standar, waktu analisis sangat cepat dan mudah dilakukan. AAS pada umumnya digunakan untuk analisa unsur, spektrofotometer absorpsi atom juga dikenal sistem single beam dan double beam layaknya Spektrofotometer UV-VIS. Sebelumnya dikenal fotometer nyala yang hanya dapat menganalisis unsur yang dapat memancarkan sinar terutama unsur golongan IA dan IIA. Umumnya lampu yang digunakan adalah lampu katoda cekung yang mana penggunaanya hanya untuk analisis satu unsur saja.
Metode AAS berprinsip pada absorbsi cahaya oleh atom. Atom-atom menyerap cahaya tersebut pada panjang gelombang tertentu, tergantung pada sifat unsurnya. Metode serapan atom hanya tergantung pada perbandingan dan tidak bergantung pada temperatur. Setiap alat AAS terdiri atas tiga komponen yaitu unit teratomisasi, sumber radiasi, sistem pengukur fotometerik.
Teknik AAS menjadi alat yang canggih dalam analisis. Ini disebabkan karena sebelum pengukuran tidak selalu memerlukan pemisahan unsur yang ditentukan karena kemungkinan penentuan satu unsur dengan kehadiran unsur lain dapat dilakukan, asalkan katoda berongga yang diperlukan tersedia. AAS dapat digunakan untuk mengukur logam sebanyak 61 logam.
Sumber cahaya pada AAS adalah sumber cahaya dari lampu katoda yang berasal dari elemen yang sedang diukur kemudian dilewatkan ke dalam nyala api yang berisi sampel yang telah teratomisasi, kemudia radiasi tersebut diteruskan ke detektor melalui monokromator. Chopper digunakan untuk membedakan radiasi yang berasal dari sumber radiasi, dan radiasi yang berasal dari nyala api. Detektor akan menolak arah searah arus (DC) dari emisi nyala dan hanya mengukur arus bolak-balik dari sumber radiasi atau sampel.
Atom dari suatu unsur pada keadaan dasar akan dikenai radiasi maka atom tersebut akan menyerap energi dan mengakibatkan elektron pada kulit terluar naik ke tingkat energi yang lebih tinggi atau tereksitasi. Jika suatu atom diberi energi, maka energi tersebut akan mempercepat gerakan elektron sehingga elektron tersebut akan tereksitasi ke tingkat energi yang lebih tinggi dan dapat kembali ke keadaan semula. Atom-atom dari sampel akan menyerap sebagian sinar yang dipancarkan oleh sumber cahaya. Penyerapan energi oleh atom terjadi pada panjang gelombang tertentu sesuai dengan energi yang dibutuhkan oleh atom tersebut.


Cara Kerja AAS :
1. pertama-tama gas di buka terlebih dahulu, kemudian kompresor, lalu ducting, main unit, dan komputer secara berurutan.
2. Di buka program SAA (Spectrum Analyse Specialist), kemudian muncul perintah ”apakah ingin mengganti lampu katoda, jika ingin mengganti klik Yes dan jika tidak No.
3. Dipilih yes untuk masuk ke menu individual command, dimasukkan nomor lampu katoda yang dipasang ke dalam kotak dialog, kemudian diklik setup, kemudian soket lampu katoda akan berputar menuju posisi paling atas supaya lampu katoda yang baru dapat diganti atau ditambahkan dengan mudah.
4. Dipilih No jika tidak ingin mengganti lampu katoda yang baru.
5. Pada program SAS 3.0, dipilih menu select element and working mode.Dipilih unsur yang akan dianalisis dengan mengklik langsung pada symbol unsur yang diinginkan
6. Jika telah selesai klik ok, kemudian muncul tampilan condition settings. Diatur parameter yang dianalisis dengan mensetting fuel flow :1,2 ; measurement; concentration ; number of sample: 2 ; unit concentration : ppm ; number of standard : 3 ; standard list : 1 ppm, 3 ppm, 9 ppm.

7. Diklik ok and setup, ditunggu hingga selesai warming up.
8. Diklik icon bergambar burner/ pembakar, setelah pembakar dan lampu menyala alat siap digunakan untuk mengukur logam.
9. Pada menu measurements pilih measure sample.
10. Dimasukkan blanko, didiamkan hingga garis lurus terbentuk, kemudian dipindahkan ke standar 1 ppm hingga data keluar.
11. Dimasukkan blanko untuk meluruskan kurva, diukur dengan tahapan yang sama untuk standar 3 ppm dan 9 ppm.

12. Jika data kurang baik akan ada perintah untuk pengukuran ulang, dilakukan pengukuran blanko, hingga kurva yang dihasilkan turun dan lurus.
13. Dimasukkan ke sampel 1 hingga kurva naik dan belok baru dilakukan pengukuran.
14. Dimasukkan blanko kembali dan dilakukan pengukuran sampel ke 2.
15. Setelah pengukuran selesai, data dapat diperoleh dengan mengklik icon print atau pada baris menu dengan mengklik file lalu print.
16. Apabila pengukuran telah selesai, aspirasikan air deionisasi untuk membilas burner selama 10 menit, api dan lampu burner dimatikan, program pada komputer dimatikan, lalu main unit AAS, kemudian kompresor, setelah itu ducting dan terakhir gas.

Bagian-Bagian pada AAS


1. Lampu Katoda
Lampu katoda merupakan sumber cahaya pada AAS. Lampu katoda memiliki masa pakai atau umur pemakaian selama 1000 jam. Lampu katoda pada setiap unsur yang akan diuji berbeda-beda tergantung unsur yang akan diuji, seperti lampu katoda Cu, hanya bisa digunakan untuk pengukuran unsur Cu. Lampu katoda terbagi menjadi dua macam, yaitu :
Lampu Katoda Monologam : Digunakan untuk mengukur 1 unsur
Lampu Katoda Multilogam : Digunakan untuk pengukuran beberapa logam sekaligus, hanya saja harganya lebih mahal.
Soket pada bagian lampu katoda yang hitam, yang lebih menonjol digunakan untuk memudahkan pemasangan lampu katoda pada saat lampu dimasukkan ke dalam soket pada AAS. Bagian yang hitam ini merupakan bagian yang paling menonjol dari ke-empat besi lainnya.
Lampu katoda berfungsi sebagai sumber cahaya untuk memberikan energi sehingga unsur logam yang akan diuji, akan mudah tereksitasi. Selotip ditambahkan, agar tidak ada ruang kosong untuk keluar masuknya gas dari luar dan keluarnya gas dari dalam, karena bila ada gas yang keluar dari dalam dapat menyebabkan keracunan pada lingkungan sekitar.

Cara pemeliharaan lampu katoda ialah bila setelah selesai digunakan, maka lampu dilepas dari soket pada main unit AAS, dan lampu diletakkan pada tempat busanya di dalam kotaknya lagi, dan dus penyimpanan ditutup kembali. Sebaiknya setelah selesai penggunaan, lamanya waktu pemakaian dicatat.

2. Tabung Gas
Tabung gas pada AAS yang digunakan merupakan tabung gas yang berisi gas asetilen. Gas asetilen pada AAS memiliki kisaran suhu ± 20000K, dan ada juga tabung gas yang berisi gas N2O yang lebih panas dari gas asetilen, dengan kisaran suhu ± 30000K. regulator pada tabung gas asetilen berfungsi untuk pengaturan banyaknya gas yang akan dikeluarkan, dan gas yang berada di dalam tabung. Spedometer pada bagian kanan regulator. Merupakan pengatur tekanan yang berada di dalam tabung.
Pengujian untuk pendeteksian bocor atau tidaknya tabung gas tersebut, yaitu dengan mendekatkan telinga ke dekat regulator gas dan diberi sedikit air, untuk pengecekkan. Bila terdengar suara atau udara, maka menendakan bahwa tabung gas bocor, dan ada gas yang keluar. Hal lainnya yang bisa dilakukan yaitu dengan memberikan sedikit air sabun pada bagian atas regulator dan dilihat apakah ada gelembung udara yang terbentuk. Bila ada, maka tabung gas tersebut positif bocor.
Sebaiknya pengecekkan kebocoran, jangan menggunakan minyak, karena minyak akan dapat menyebabkan saluran gas tersumbat. Gas didalam tabung dapat keluar karena disebabkan di dalam tabung pada bagian dasar tabung berisi aseton yang dapat membuat gas akan mudah keluar, selain gas juga memiliki tekanan.


3. Ducting
Ducting merupakan bagian cerobong asap untuk menyedot asap atau sisa pembakaran pada AAS, yang langsung dihubungkan pada cerobong asap bagian luar pada atap bangunan, agar asap yang dihasilkan oleh AAS, tidak berbahaya bagi lingkungan sekitar. Asap yang dihasilkan dari pembakaran pada AAS, diolah sedemikian rupa di dalam ducting, agar ppolusi yang dihasilkan tidak berbahaya.
Cara pemeliharaan ducting, yaitu dengan menutup bagian ducting secara horizontal, agar bagian atas dapat tertutup rapat, sehingga tidak akan ada serangga atau binatang lainnya yang dapat masuk ke dalam ducting. Karena bila ada serangga atau binatang lainnya yang masuk ke dalam ducting , maka dapat menyebabkan ducting tersumbat.
Penggunaan ducting yaitu, menekan bagian kecil pada ducting kearah miring, karena bila lurus secara horizontal, menandakan ducting tertutup. Ducting berfungsi untuk menghisap hasil pembakara yang terjadi pada AAS, dan mengeluarkannya melalui cerobong asap yang terhubung dengan ducting


4. Kompresor
Kompresor merupakan alat yang terpisah dengan main unit, karena alat iniberfungsi untuk mensuplai kebutuhan udara yang akan digunakan oleh AAS, pada waktu pembakaran atom. Kompresor memiliki 3 tombol pengatur tekanan, dimana pada bagian yang kotak hitam merupakan tombol ON-OFF, spedo pada bagian tengah merupakan besar kecilnya udara yang akan dikeluarkan, atau berfungsi sebagai pengatur tekanan, sedangkan tombol yang kanan merupakantombol pengaturan untuk mengatur banyak/sedikitnya udara yang akan disemprotkan ke burner.

Bagian pada belakang kompresor digunakan sebagai tempat penyimpanan udara setelah usai penggunaan AAS. Alat ini berfungsi untuk menyaring udara dari luar, agar bersih.posisi ke kanan, merupakan posisi terbuka, dan posisi ke kiri meerupakan posisi tertutup. Uap air yang dikeluarkan, akan memercik kencang dan dapat mengakibatkan lantai sekitar menjadi basah, oleh karena itu sebaiknya pada saat menekan ke kanan bagian ini, sebaiknya ditampung dengan lap, agar lantai tidak menjadi basah., dan uap air akan terserap ke lap.

5. Burner
Burner merupakan bagian paling terpenting di dalam main unit, karena burner berfungsi sebagai tempat pancampuran gas asetilen, dan aquabides, agar tercampur merata, dan dapat terbakar pada pemantik api secara baik dan merata. Lobang yang berada pada burner, merupakan lobang pemantik api, dimana pada lobang inilah awal dari proses pengatomisasian nyala api.
Perawatan burner yaitu setelah selesai pengukuran dilakukan, selang aspirator dimasukkan ke dalam botol yang berisi aquabides selama ±15 menit, hal ini merupakan proses pencucian pada aspirator dan burner setelah selesai pemakaian. Selang aspirator digunakan untuk menghisap atau menyedot larutan sampel dan standar yang akan diuji. Selang aspirator berada pada bagian selang yang berwarna oranye di bagian kanan burner. Sedangkan selang yang kiri, merupakan selang untuk mengalirkan gas asetilen.
Logam yang akan diuji merupakan logam yang berupa larutan dan harus dilarutkan terlebih dahulu dengan menggunakan larutan asam nitrat pekat. Logam yang berada di dalam larutan, akan mengalami eksitasi dari energi rendah ke energi tinggi. Nilai eksitasi dari setiap logam memiliki nilai yang berbeda-beda. Warna api yang dihasilkan berbeda-beda bergantung pada tingkat konsentrasi logam yang diukur. Bila warna api merah, maka menandakan bahwa terlalu banyaknya gas. Dan warna api paling biru, merupakan warna api yang paling baik, dan paling panas, dengan konsentrasi

6. Buangan pada AAS
Buangan pada AAS disimpan di dalam drigen dan diletakkan terpisah pada AAS. Buangan dihubungkan dengan selang buangan yang dibuat melingkar sedemikian rupa, agar sisa buangan sebelumnya tidak naik lagi ke atas, karena bila hal ini terjadi dapat mematikan proses pengatomisasian nyala api pada saat pengukuran sampel, sehingga kurva yang dihasilkan akan terlihat buruk.

Tempat wadah buangan (drigen) ditempatkan pada papan yang juga dilengkapi dengan lampu indicator. Bila lampu indicator menyala, menandakan bahwa alat AAS atau api pada proses pengatomisasian menyala, dan sedang berlangsungnya proses pengatomisasian nyala api. Selain itu, papan tersebut juga berfungsi agar tempat atau wadah buangan tidak tersenggol kaki. Bila buangan sudah penuh, isi di dalam wadah jangan dibuat kosong, tetapi disisakan sedikit, agar tidak kering.

Nutrisi Tanaman

Materi Kuliah Nutrisi Tanaman Kuliah 1